tips and tricks

Bridle Joints on the Hollow Chisel Mortiser

Back during the prime of the pandemic (early 2021), I took the plunge and bought a benchtop hollow chisel mortiser (an “HCM”). At the time, the Powermatic Benchtop Mortiser was on backorder from Southern Tool (who are really great to work with [not a sponsor]). I’ve always hated boring and chopping mortises by hand. I’m totally totally fine with cutting tenons with hand tools. It’s just the donkey work of mortises that I would love to avoid. And my HCM allows me to do so.

So when it came time to cut some large bridle joints for my new forever workbench (I mean it this time!), I couldn’t help but wonder if I could do it on the HCM. I consider myself to be pretty good at following a line with a panel saw and have cut plenty of large bridle joints that way. But bridle joints are just “open” mortise and tenon joints, after all. So cutting bridles on the HCM should be easy enough with just a little planning. It’s not really intended for this purpose, but it works just fine.

First of all, it really helps if all of your leg blanks are S4S and the same dimensions, within a few shavings at least. That way, you can flip the blank in all directions and use the same fence setting for centering the mortise. It’s not fatal if things aren’t exact, as long as you use a consistent reference edge for the matching legs. But it will slow things down if you need to reset the fence after every flip end over end.

Second, leave your leg blank overlong, so there is some meat to support the temporarily enclosed mortise without blowing out. For wood species that split easily, such as Red Oak, you should probably leave a full inch. These legs are poplar, so 1/2″ was fine.

Thirdly, size your mortise to be no more than 4x (or just under 4x, ideally) the size of the bit you plan to use.

That is a broken auger from another hollow chisel mortiser bit that I use to scoop out waste.

I start by defining the walls of the mortise. Assuming the mortise is centered on the leg, cut about halfway through on a full pass, flip end over end, and cut the rest of the way from the other side. Then, you can spin the leg 180 degrees and repeat the two passes. After four total passes, you have the mortise defined as shown above. Repeat for the other 3 legs until the walls of the mortise are all defined.

Now, reset the fence so you are removing half of the material remaining in the middle part of the mortise. If you’ve sized the bridle joint correctly (i.e., no more than 4x the size of your HCM bit), you only need to reset the fence this once. Remove the material only at the base of the mortise with four plunge cuts, flipping the work as before. The base of the mortise will now be fully established. No need to worry about removing the rest of the waste on the HCM, as you’re about to see.

Like so.

Finally, saw off the extra length on the leg (I use my miter chop saw for big cuts like this, but hand saws are fine too). BAM! You’ve got an open mortise. You may have a small strip of waste holding the inner chunk on. Just snap it off and you’re good.

The waste falls out in two pieces.

If needed, a wide chisel or a medium cut file makes quick work of smoothing any unevenness on the inside of the open mortise. But if your HCM is well set up, this may not be an issue.

Some quick paring work on the walls and the base and this will be joinery ready.

Is this the most efficient way to cut bridle joints? No, not at all. Either a table saw or a band saw works faster and probably better. But I’m still learning to set up my little band saw and I wasn’t confident the cheek cuts wouldn’t wander horribly. Plus I already had the HCM set up for mortising in the lower stretchers so it was quick to move over to this operation.

While it may be a single purpose tool, I believe the HCM is the second most time saving stationary tool for the hand tool woodworker (right after the thickness planer). It’s far quieter than a router or simply chopping the mortise with chisel and mallet, and produces more predictable results. It’s faster than boring and paring out a mortise (whether with a drill press, a hand drill or a brace) and makes only the same amount of mess. All of which makes it ideal for small space woodworking.

To be clear, you don’t need a hollow chisel mortiser as a hand tool woodworker. But if I have a batch of mortises to knock out, odds are that’s where you’ll find me.

JPG

New Year 2023 – Remake a Hand Saw

Another year on the Gregorian calendar has passed and I’m back in the workshop. As I always say, “ABCD – Always be Carpen them Diems!” And today, like every other New Year’s Day, is no different.

My first project of the year is making a panel saw from “scratch”. Those quotes are doing some pretty heavy lifting, as the plate is taken from a 26″ vintage Simonds 10 TPI crosscut hand saw. I’m not in the mood to cut new teeth today. The plate is in very good shape but the handle was a mess. Clearly an aftermarket job, the slot for the saw plate was at like 10 degrees to the handle and it made for terrible hang.

So first I made a new tote. There are a ton of good tutorials on the yutubs about this, so I’m not going to offer any real pointers here. However, a small oscillating spindle sander (I have the handheld one from Wen, which seems to be a knockoff of the Triton model) makes the job a lot quicker. I don’t have a band saw, so bringing the outline of the tote into flat on the OSS (instead of by hand with rasps and files) is a godsend. Especially on quartersawn hard maple.

Once the outside was shaped, I took my cues from the BTC Hardware Store Saw and busted out the trim router with a chamfer bit. Once the hard arrises are sanded down, it’s just as comfortable as full rounds. Plus, the intersection of the chamfers made a cool lamb’s tongue-like feature at the bottom of the tote, without having to do an actual lamb’s tongue.

I used the Blackburn Tools handle pattern and stayed pretty true to the overall shape.

When I make the next hand saw tote, if I use this pattern again, I will lighten the chamfer along the front (seen left, where it meets the saw plate). That heavy chamfer, as cool as it looks, nearly overlapped with the top saw nut and left a fragile edge that will probably break off soon.

Next I had to modify the plate to fit the tote. That vertical dotted line on the pattern to the right of the saw nuts shows where the plate seats into the tote. Problem is, the sourced plate did not have a straight line at the heel. That means it’s angle grinder time. I just use a scrap of plywood as a fence (learned that one from Pask Makes) and go to town. I also nibbed off the corner at the heel.

I am aware the guard is off. This operation doesn’t work with the guard on.

The angle grinder leaves the plate rather work hardened at this point. Files still work, but you really have to draw file to get down to fresh steel. I pop it in the saw vise and use the same jig for jointing the teeth. It’s important this be straight and true so it seats nicely in the tote.

You can see the reshaped heel, before a bit of rounding.

I didn’t get pictures of it, but I next cut the slot in the tote for the plate. You can freehand this (like the guy who last owned the saw did), but three is a better way. Just clamp to a flat surface (like a benchtop) another panel saw with a thinner plate and a fine set to the bench with a spacer underneath that centers the cut. Then draw the tote, flat against the bench and cut the slot as deep as you can. You can then finish the cut by hand in the vise, as the portion of the slot you already cut will guide the saw the rest of the way. Lee Valley has an excellent guide on this. If the slot is slightly off center (mine was by about 1/32″), just plane down the thicker side.

Now it’s time for drilling holes.

Now came the part I was dreading. When re-handling panel saws in the past, I used the existing handle as a pattern and located the saw nuts exact where they had been on the previous tote. For this, I was starting fresh and that meant drilling new holes in the plate. The spring steel plate. With a cheap benchtop drill press.

I had previously drilled 1/16″ pilot holes through the tote and bored the initial recesses for the saw nuts. So I started by clamping assembled saw onto the drill press table and locating the 1/16″ holes, which I then drilled through the plate. I then set the handle aside, recentered the drill press on each pilot hole in the plate, and clamped down the plate to the drill press table. You do not want a spinning hand saw plane. Then I just worked my way up from 1/16″ to 7/32″ incrementally until there were three 7/32″ holes in the plate. In truth, I cooked about four 7/32″ drill bits. It’s just too much for my little drill press to handle. But they were cheap drill bits (scavenged from various box store sets).

All that was left to finish the tote was drilling out the saw nut holes (9/32″ for the slotted nuts and 1/4″ for the medallion and bolts) and tweaking the depth of the recesses. I think I set the recesses in a little deep, but it works. Some boiled linseed oil really makes the quartersawn holographics of the hard maple pop.

Medallion side.
Nut side.

I still need to hack off some of the toe to get the plate itself down to about 19″ of tooth line. That, in my experience, makes the plate stiff enough to not need a half back or magnetic guide for basic joinery. Plus it gets rid of that kink that always develops about 5-6″ from the toe of every 26″ hand saw. And, of course, that will allow it to fit in the toolbox.

The hang of the saw is a bit toe heavy, which makes me think it should be a medium rip (8-10 TPI). I find that useful for crosscutting wider, thicker stock on the saw bench and still able to rip efficiently at the vise. A saw like that is a workhorse for my travel toolbox. Once the BLO dries, it’s time to carpe some more diems and reshape the teeth.

But, for now, Happy New Year and I hope you find some time in the shop soon. Thanks for being a reader and stay tuned for some new and exciting things this year.

JPG

This Time of Year

Around these parts (Fairfield County, Connecticut), it’s warming up. This time of year, I’m finally able to drag my workbench outside and get real some woodworking done. My outside workbench, now with new slab and tool tray, is in fact getting quite a workout. I can get a bunch done with just a pair of holdfasts and a few clamps to secure the work. Proper vises are great. But they are not absolutely necessary if you’re not cutting English style dovetails.

Nice to see the slab and tray matching so well, though.

One of my goals for this year is mastering tapered tenon joinery for staked furniture. Or at least becoming facile with it. I have experimented with reamer and tapered tenon cutter before, but in situations where strength was not a primary concern. Chairs and stools are higher leverage projects (literally and figuratively) than credenza bases and side tables.

So with a nice weekend, I might as well make some chips on the lawn with a drawknife and spokeshave to prepare some leg stock for refinement. I resolved to take the tapers further than I usually do off the drawknife. I also spent more time with the spokeshave before introducing the tapered tenon cutter. I’m not sure it was faster than doing more rough work, but the results are more consistent than my prior work.

Like so.

These legs are ash, which was split off from a small timber that checked badly while it was drying I’d have preferred the leg blanks be closer to 2″ square, but you work with that you’ve got (these are 1.65″ square). I’ll add some stretchers between the pairs of legs for extra rigidity.

Aligning the legs for the eventual stretcher.

I am also working through some old boards, some from as early as 2014 that I’ve been dragging from shop to shop all these years. Among that is a red oak 2×12 (nominal size 1.75 x 11.25). It’s about 65 inches long and I could never bring myself to cut it down into smaller boards. So as I figure out how to be precise with compound angled joinery, I might as well make another low bench. The top had cupped and bowed pretty badly so by the time it was flattened, it was only 1.5″ thick. You may not think half an inch of red oak means that much, but it does. This is a sitting bench, not a low workbench, so the little bit of flex means added comfort. But if this were to live in the shop, it would need a 2×4 glued and screwed to the underside for extra support.

Ideally, the top would be thicker than the legs.

I do all my boring and reaming by hand with a brace, so it’s much harder to overshoot an angle or a depth with the reamer that way. But it’s still important to check your angles and go slow. Doing so will ensure the exit holes on the top (ie, visible) of the seat are of consistent size and shape. In the end, some irregularities aren’t fatal to the structural soundness of the piece. But looking nice is important too.

So this is a very long way of saying, if it’s nice outside, I will drag a workbench outside and get a tan while doing some rougher work. It’s harder to rake shavings off the lawn than to sweep them up off the floor.

But such is life.

JPG

Fixgasm (Part III?)

I’m unsure if this counts as a proper fixgasm, but I finally got around to framing out and paneling a closet that for a long time was hidden behind the old wall panels. But let’s assume for a moment the closet was already framed out and paneled. Then putting some shelving in definitely counts as a fixgasm.

Yes, I have mostly black and yellow branded tools. No, they aren’t a sponsor.

This closet was, up until this very day, a receptacle for the detritus of the workshop. Clamps, offcuts and various oddments were piled up, leaning against the wall. So with floor to ceiling storage (these metal rack units work great for closet shelving), I have now emptied two (!) different smaller storage units that take up floor space in the overflow room. Getting rid of those smaller storage units will allow me to move things around a bit, which will free up more room.

And then it cascades until I might finally create a direct path from the handtool shop to the thickness planer in the overflow room.

But let’s not get ahead of ourselves.

JPG

Batchin’ ’em Out

If you’ve been here more than once, you know I’m a hand tool guy. To be clear, I do have power tools that complement primarily hand tool work. My lunchbox thickness planer does the donkey work once there is a tried and true reference face and a squared reference edge off the jointer plane. A double bevel compound miter saw quickly cuts stock to rough length. And you can pry my benchtop hollow chisel mortiser from my cold, dead hands. I also have a small drill press (that at this point is used exclusively for accurate drawboring), a collection of battery-powered DIY tools (a drill driver, a circular saw and a random orbital sander), and a trim router kit for when I’ve truly given up on things.

But doing hand work efficiently is more than just leveraging power when, as and if it makes sense. When there are multiple parts to cut (there always are), it helps to think like a one-person assembly line. Each step in the assembly line is a repeated task. Sure, variety is a the spice of life. But just like a blade and fence setup at the table saw, you want to set it once, do all the cuts, then move on. It’s the same thing for body mechanics at the workbench.

So let’s talk about tapered octagon legs by hand.

The first two tapers on each piece (on opposite sides) go pretty quickly in the face vise. If you work to opposite sides, the other profile is still square and therefore easily held in the vise (in my case, a leg vise). Do that eight times.

If you have a twin screw vise that can hold tapers securely, great. Stay at the face vise. But I don’t, so I move to the tail vise. Pinched between the dogs, the legs sit flush to the bench on the tapers I had just planed to make a square taper on all faces. Do that eight times.

And then you have this.

Now lay out the octagon(s). If you have a lathe and will taper across the entire length, you’re nearly done at the workbench. But I don’t have a lathe and I like to start the taper where the round tenon ends, so in addition to the octagon at the foot, I also lay out an octagon on the top where the tenon will go. A cradle jig that goes in the tail vise holds the work and I taper from square down to octagon at the foot and also from square down to an octagon at the top. Do that thirty-two times (16 long tapers and 16 short tapers).

And you end up with something like this.

That short taper makes it easier to center the round tenon cutter I have for my drill driver, btw. I use a 1 1/2″ tenon cutter, but that’s just a rough cut. With chisel, spokeshave and rasp I take that round tenon down to 1 3/8″ to ensure it’s centered on the blank (it rarely is straight off the tenon cutter). It also helps to bore a 1 3/8″ hole in some hardwood (or at least wood that is harder than your blank) with the bit you’ll use for the mortise to test the fit now and again. Do this four times.

Almost done now! Yes, that’s a Mets colored Nalgene. #LFGM

Finally, I go back to the corners (where they were tapered from square to octagon) and plane in the full tapered octagon from the tenon to the foot. I find taking the facets down evenly first (so the facet is parallel from the tenon to the foot), and then incrementally increasing the facet width at the top near the tenon by counting strokes, works best. Again, if you taper the full length, this step is unnecessary.

The finished leg.

It goes without saying, but I did one leg first to work out the process and then batched out the other three with the process described above. Are they perfect? Of course not. But we are not machines (and should not strive to be machines). And I enjoy the hand made aesthetic far more than machine-wrought perfection.

Okay, I lied. I made a second one to test the process. I’m actually at step 2 for the other two legs.

There is a great rhythm one can get into when batching out parts at the bench. Hehe, batching.

JPG

Most Important Woodworking Website

There is a website I go to (almost) every day when I’m in the shop. A website with the most important and useful woodworking insights. Truly, it is an indispensable resource for my woodworking needs.

That website: http://www.carbidedepot.com/formulas-trigright.asp

A trigonometry calculator.

Angles are everywhere; make sure you know how long to rough cut a board.

This is not a joke. Imagine rough cutting a board too short and only learning it after you’re trying to level the legs.

A travesty, for sure.

JPG

New Year’s Day, 2022

Another year has passed. As is my heathen wont, I went to bed early last night, stone sober and well hydrated, and hit the shop early this morning. I like to begin each year on my own terms. And then ride out the downhill trajectory from there.

In advance of my regular January vacation, I’ve been making a “gentleman’s tool chest” for a core set of hand tools. Now I’m no gentleman (or so I’ve been told), but as I understand it, the “gentleman” refers simultaneously to (x) a non-professional woodworker and (y) the smaller set of tools a non-professional joiner or cabinetmaker would have in their chest. So maybe I am a gentleman.

This particular tool chest is a modest 25″ long, 11″ deep and 11″ high and will have 2 sliding tills. The planes and sharpening gear are french fit into the tool well and there won’t be too much lose gear rattling around. It’s also intended to be a general around-the-house toolbox holding my nicest spare tools so it will move around a fair bit.

Still one more sliding till to make.

In any tool storage build, like in life, there are compromises. For example, there is not any room for joinery saws in this chest, but I have modified a 10 tpi rip saw (it crosscuts too) and a 6 tpi rip saw to have shorter plates. I say modified; I cutoff about 5 inches from the toe of each saw with an angle grinder and filed off the burrs. The shorter plates are stiff enough for precise sawing as needed (and everything gets cleaned up with chisel or router plane anyway).

It’s also rabbeted and nailed, not dovetailed. Cauls help keep everything flat when nailing together.

The full kit this holds is as follows:

  • Planes: No. 5 jack plane, No. 3 smoothing plane, Low-angle block plane, small router plane
  • Saws: 10 tpi rip cut panel saw (18″ plate): 6 tpi rip cut panel saw (18″ plate)
  • Chisels: 1/4, 1/2, 3/4, 1 inch bench chisels, carver’s mallet
  • Marking and measuring: 12″ combination square, 8″ machinist square, wheel marking gauge, 12 foot tape measure, folding marking knife, mechanical pencils
  • Boring: Two jaw, short sweep brace, plus hex adapter, large diameter adjustable auger bit, drill bit set, hand countersink
  • Sharpening: 120, 220, 1200 grit diamond plates, side clamp honing guide and setup block, plus glass cleaner and jojoba oil
  • Miscellaneous: Warrington-pattern hammer, slotted and phillips screwdrivers, cork sanding block, foam ear plugs (lots of these)

I’m sure there is something I’m forgetting (I can supplement this later), but I find the above set of tools is everything one needs for general woodworking projects that aren’t intended to be the finest furniture. I can take rough lumber to dimension with these tools and do crisp joinery by hand without too much fuss. I will likely make or purchase a medium router plane to fit this chest, as well as a set of wooden winding sticks and a wooden straightedge.

As I write this, the second till is glued and nailed and drying in the shop. So that means only one thing: it’s lid time.

And that’s the point at which every tool chest build starts to get tedious.

Happy New Year, everyone!

JPG

Thought Experiment

Where we last left off, I had just about made a functional workbench for the cost of seven Douglas Fir 2×4’s and some construction screws.  Before I knew it, I had a sturdy surface that (although a bit narrow, in retrospect) was ready for some serious woodworking.  There was just one problem: I had cheated and not even realized it.

IMG_20200512_160454.jpg

Nice looking bench, if I say so myself.

You may have noticed the Veritas low profile planing stop shown above.  They are easy to install (you just drill a couple of 3/4″ holes) and super functional and I swear by them.  But there is no 3/4″ bit in my basic tool kit yet.  Since I’m not yet ready to compromise this intellectual exercise, the planing stop has to go.  Some West Systems epoxy does the trick filling the holes.

IMG_20200513_093018.jpg

Faces in things.

3/4″ drill bit aside, I definitely have a regular set of drill bits and a hammer.  So instead of a commercially-available planing stop, let’s instead make a palm, which is a different type of planing stop that’s useful for restraining boards both on the their faces and on their edges.

For those unfamiliar, it’s literally just two 1/2″ boards, nailed on at 45 degrees to the length of the bench and 90 degrees to each other. I used 6d die-forged nails with the heads counter-bored a bit so I don’t accidentally ding a plane sole on thinner stock.  Narrow boards (and boards on edge) wedge themselves into the palm (a bit like a crochet), and wider boards but up against the points (like a straight planing stop).

IMG_20200514_101714.jpg

Not sure what additional wisdom you’re looking for here.

I think that’s all the workholding I’ll need for now.  That said, the list of tools has expanded a bit.  The current list of all tools I used for building the bench is as follows:

  • No. 5 Jack Plane
  • Chisels: 1/2″ and 1″
  • Panel saw
  • Double-faced mallet (not pictured)
  • Claw hammer (not pictured)
  • 12″ combination square
  • 4″ try square
  • 36″ straightedge
  • 12′ tape measure (not pictured)
  • Folding marking knife
  • Wheel marking gauge
  • Small folding bevel gauge
  • Birdcage (square) awl
  • Mechanical pencil, etc.
  • Medium cut straight file
  • Cordless drill driver with standard drill bits and driver bits (bits not pictured)

But I think it’s fair to say that if the entire tool kit for making a workbench fit on the top of that workbench, then it qualifies as an apartment woodworking bench.

IMG_20200511_194329.jpg

I plan to immediately add a large router plane, also.  I can live without it; I just choose not to.

Up to this point, I’ve just been keeping track of the tools used and putting them back in my floor chest as I go.  But a full size floor chest is not exactly within reach for most small space woodworkers.  To be honest, my full size floor chest (40x24x24, not including the casters) is probably too large for my 12×13 bedroom workshop shop.  So it’s time to make some tool storage that’s more appropriate for a small shop.

I think a tool chest in the Dutch style popularized by Christopher Schwarz and Megan Fitzpatrick is the best option here.  I’ve built two of them before (one large that was gifted to a friend, one extra small with just the angled compartment that is just a residential toolbox) and in my experience they can be built with minimal tools.  I’m not bold enough to cut dovetails pins first on a low workbench, so I’ll stick to rabbets and nails/screws for this one.  Should be plenty strong for something that will live on a saw bench up against the wall.

But here are the rules going forward for this experiment:

Rule #1A: before I can pull a tool from my floor chest, I have to first do the operation (if possible) using one of the simple tools listed above.  For example, when making the workbench, after I cleaned up one of the leg mortises entirely with chisel, I could have swapped in a large router plane to do the same job (I actually did this for one where the grain was particularly unruly).  Another example: once I hand crosscut and square a board the first time, I can thereafter use my chop saw to move things along on the rest of the cuts.

Rule #1B: if the operation cannot be comfortably (or safely) done on the low workbench with a simpler tool, I can pull the correct tool as long as it can will in the Dutch tool chest.  If the correct tool will not fit in the Dutch tool chest and the operation is not comfortable (or safe) to do on the low workbench, I cannot perform that operation and must use a different joint/feature.

Rule #2: No vises, but clamping boards to the workbench is fair game.  I have access to my full set of clamps, in fact.  I’m not that much of a masochist.

Rule #3: I have access to my existing shooting board and can do the operation on my high workbench.  I can certainly make another shooting board that will fit better on the low workbench (I’ve done it before).  However, this same shooting board used to live on my kitchen island and I see no reason to change things up now.  And shooting while standing is far easier on the back and shoulders.

Rule #4: I’m also allowed to use my benchtop drill press for the chisel rack that goes in the chest.  Yes, I could do it by hand.  But I’m not getting into this argument with you.

As of the writing of this post, I’m almost finished with the main part of the Dutch tool chest.  Here is the full tool kit to date (not counting parallel jaw clamps and the aforementioned benchtop drill press):

IMG_20200517_080658.jpg

Still no 3/4″ auger and bit, though.

This has been a long one, so I’m leaving it at that for now.

JPG

Version 2.0

Once upon a time, I made a leg vise with a cog on a wooden screw instead of a pin board.  I worked with it for about four months and can definitively say that I prefer it to a pin board.  But 1.25″ for the wooden screw is a bit thin, in my opinion.  So when it came to install a leg vise on the new workbench, I took the chance to perfect the form and use a full 1.5″ screw and a beefier cog.

IMG_20200417_141108.jpg

Still need to shape the vise chop a bit.

The main screw for this leg vise is scavenged from the prior leg vise.  It’s just one of those European screws marketed as a “tail vise” screw.  I had intended to make a new wooden screw with my JJ Beall Big Threader, but none of my 1.5″ dowel stock is straight enough along.  So I scavenged the screw from the leg vise on the reclaimed maple console table, which has over 12″ of thread.

The cog is 8/4 quartersawn white oak.  It’s dense and stable and was honestly the only 8″+ wide stock I had already milled.  What matters is it’s large enough that the teeth of the cog will protrude beyond the edges of the chop, so it is easily worked with your feet.

The cog is pretty easy to make, if you take it in steps.  I began my marking and drilling out on the drill press the 1 3/8″ center hole for tapping, and eight 1.5″ holes to form the teeth.  Eight teeth is plenty.  Everything gets a light chamfer with a trim router.

IMG_20200417_095140.jpg

I find it’s easier to do the boring when it’s part of the larger board.

It’s then trimmed to final size, first cut to square, then the corners taken off at 45 degrees.  I ended up taking another 1/8″ or so off each side, so the teeth of the cog weren’t quite as sharp.   Everything gets one more set of chamfers and hand sanding to break any more sharp edges.

IMG_20200417_100958.jpg

The flat face points inward, where it contacts the leg.

All that’s left is to bore the hole in the chop for the cog screw.  Don’t bore it too deep.  You need at least 1/2″ of wood for the screw to press again.  Otherwise, it might blow out if you’re really cranking down.  I just use wood glue (although epoxy would work too) and I make sure the screw is perfectly perpendicular to the vise chop.  You could angle it slightly upward (to create natural toe-in alignment), but I don’t think it’s necessary if your main screw is otherwise perpendicular.

IMG_20200417_133708.jpg

Keep track of your reference surfaces and alignment is a breeze.

This cog has some real heft to it.  A decent spin with the foot and the cog spins under its own momentum.  A real improvement over the 1′ hard maple cog on the last workbench.  I will say the angled chop makes it a slightly harder to get at on the right side (the tightening side).  But it’s not too much effort.

Is this method more economical than a criss-cross or a pin board?  Not really.  But it works great and I highly recommend it.  Just remember to ream the hole in the leg vertically.  Otherwise, the cog screw will bind if it’s not perfectly in alignment with the main screw.

JPG

Keeping it Together

Fair warning: this post is actually a “how to” on a method for reinforcing a joint where you’re joining two boards at a right angle by screwing through the face grain of one board into the end-grain of the mating board.  If that interests you, please proceed.

I recently built a “The Naked Woodworker” workbench, partly for the intellectual exercise of it and partly because my brother needed a workbench for his recently-expanded garage.  I have mostly good things to say about the design and the ease of construction.  I was able to put the entire bench together in less than 12 hours time of shop time stretched over two days (one long, one short).  Had I let the wood acclimate a bit more before construction, I bet could have done the whole thing in a single day.

IMG_20200209_151433.jpg

This was about 6 total shop hours in.

The bench is mostly glued and screwed together, but there are two joints where boards are joined at right angles with just screws through the face grain of one board into the end grain of the mating board.  One such place is the top rails of the leg assemblies (seen above).  The other is the number of bearers stretched between the aprons to which the top is eventually screwed down.

Screws into end grain, especially late growth softwood, is not the strongest joint.  In an abundance of caution, I sized all the end grain and glued it as best I could.  But it was still a bit shaky in places.  So when using up the last bits of construction lumber to make a shop fixture, there were a couple of places where screws into end-grain just wouldn’t cut it.  Instead, I utilized a 3/4″ oak dowel like a bench bolt to give something for the screw to bite into.

IMG_20200223_125615.jpg

I’ve been using my 18 gauge brad nailer more, these days.

Please note, I cannot take credit for this technique.  I learned it from a Popular Woodworking video on making a quick and dirty first workbench.  It shows up in the first half of the linked video.

First, bore a hole to match the dowel (3/4″ in this case) and glue it in place with the rings perpendicular to the direction the screw will penetrate.  While not critical, this will reduce the likelihood of the dowel splitting and weakening the joint.  Anything over 1″ is probably enough.  I went the full 1.5″ that my drill guide could handle.

This hole is 1 5/8″ on center, meaning there is a full 1 1/4″ of material for the dowel to lock against.

IMG_20200223_120830.jpg

The boards cupped a bit after planing.  More stable stock would not have needed this screw.

Next, drill a pilot hole for the screw, all the way through the dowel.  For cleanliness, I first countersank the hole, then finished it off with a long drill bit.  Red oak is tough, even for self-drilling deck screws.  Better not to risk it.  An extra long bit lets you sight to ensure the pilot hole passes through the dowel.

IMG_20200223_121142.jpg

Luckily, this extra long bit (the only one I own) was perfect for the screws in use.

Finally, drive the screw and flush up the dowel.  I use a flush trim saw and either a chisel or a plane, depending on how much material remains after sawing.

IMG_20200223_125615.jpg

Never to be seen again once the top is attached.

If done right, this joint is tremendously strong (at least compared to screwing into end grain alone).  Bench bolts are not terribly expensive, but oak dowel and screws are undoubtedly cheaper.  And, to be fair, this method requires less prep and fuss.

And less prep and fuss is what shop fixtures are all about.

JPG