Shop Equipment

Pushing Boundaries

It’s been tough to find enjoyable workshop time of late. There is some work being done on the house and as cramped as my 12′ x 13′ (3.5m x 4m) workshop is at the best of times, it’s even worse when more than half of it is filled with furniture from other rooms. I’ve got about 5 feet of workbench (at the vise end) and 2 feet of space along the front to move around. I can reach all the tools in my wall cabinet, but it takes a bit of leaning on my tiptoes to get the coping saw.  Even so, I’ve a project I need to complete, so I push onward.

Not sure if I’ve ever posted this image of the finished wall cabinet.

The vanity in the downstairs bathroom has always been subpar. It’s internet furniture pressboard bullshit that I bought when I first got the house just needed to make a gross washroom usable on a DIY basis. Now that the whole bathroom is being updated by professionals, I figured I’d tackle making a new vanity that is up to my own specs. 

The last few chunks of reclaimed old growth Southern Yellow Pine barn beam would be just enough for the frame and a top. My little bandsaw was instrumental in this; I don’t think hand ripping would have left enough stock. I have officially hit “can’t live without it” status on that tool, for what it’s worth.

In terms of style, I’ve always been fascinated with the “slatted” style of furniture. I think the first time I saw it was a Restoration Hardware media cabinet. But it seems a dreadful waste of material because the slats tend to be decorative (and not structural). But what if they were structural? They’d essentially make a wide board out of a few small sticks (id est, offcuts from the bandsaw): maximum strength with minimum material.

While also hiding the plumbing below.

As an aside (as if my entire collected works weren’t just one massive, frenetic soliloquy), this is the kind of project where a hollow chisel mortiser really expedites things. I couldn’t centralize the mortises for the top the rails or the slats and have mortises of any great substance, so the outer walls of the mortises ended up less than 1/4″ (6mm). So not something where brace and bit boring or chisel chopping is without significant risk of blowing out the whole thing. And when you don’t have material to spare (and can’t afford to scrap the work), a hollow chisel mortiser really shines.

The second of the power tool triumvirate for a small space, hand tool woodworker.

It occurs to me that, even with multiple slats, a piece like this still needs substantial, double shouldered tenons for the top rails and the lower rail. This will increase the bearing surface of the main joints in the structure and should encourage squareness in the overall assembly and a strong frame. The slats themselves can be single shouldered, I think (again, just to use all of the available material). On the lower rails, a tight fit becomes a necessary. So everything gets fettled with a router plane. 

Do others use the “over the garbage can” method for storing ready-for-glue up pieces?

I would typically drawbore each joint on something like this, but there really isn’t room for a size of peg that would give any real strength. I think, instead, I’ll use die forged nails (after finish) to lock everything in place. I’m not worried about the glue failing, I don’t think. But some extra reinforcement can’t hurt in a bathroom with wildly-varying humidity. 

But I’ll tackle that after I finish the frame. I’ll also talk more about making the top where the sink will sit (this is for a vessel sink).

JPG

Fetch the Board Stretcher

Happy New Year, everyone! I realized I missed my usual “6am Eastern on New Years Day” post. I think that’s because I went to an actual party and didn’t get to bed right at 730pm like I have for as long as this blog existed. But anyway… 

A while ago, I obtained an old growth slab of what I believe is Slash Pine (one of the species of Southern Yellow Pine) from a reclamation sawmill. It’s about 16 inches wide, 90 inches long, and after flattening is still a solid 3 1/2″ thick. It’s mostly flat at this point, anyway. I actually made an impromptu router sled because it’s so damned hard (the resin long ago crystallized and, between that and the barn grit in the checks, it was eating O1 steel for breakfast). This slab will make a wonderful workbench top once I laminate a fascia board along the front edge and square the ends, though. 

And after I fill all the nail holes and bolt holes with tinted epoxy offscreen.

Another workbench, you say? Well yes, of course. I’ve been working on my 8 foot maple Nicholson which I made in the thick of the pandemic. It’s got the nicest leg vise I’ve made (it’s angled, uses a cog and screw instead of a pin board, and opens and closes very smoothly). But I’m kind of over front aprons again; it makes using bench dogs in the top too difficult, even if the apron is great for edge planing long, wide boards. And I have just the one workbench at home after giving all the others away. A second wouldn’t hurt. 

This new bench will be in the Shaker style, like at Hancock Shaker Village. Leg vise, tail vise, sliding deadman, some drawers underneath. In fact, I’ve already made the leg assemblies. But unlike the Shakers, this bench will knock down (like a Moravian workbench). And I have a linear bearing and a 1 1/2″ hardened steel shaft to use as a parallel guide for the leg vise instead of a pin board (or even a cog and screw or crisscross). McMaster-Carr is the best. 

When making the recess for the linear bearing, though, I didn’t have a good way to make a 2 3/8″ hole. So I chopped it out octagonally. And it was scruffy and didn’t fit well and I had to shim it. All of which ate at my brain and caused me to set the whole project aside for a while. 

I’ve finally come back to it. And it still eats my brain. 

This is just not the quality I’m used to producing.

And what is a fellow to do when a bad bench installation is ruining a good time? Cut the offending portion of the leg off and add some wood back on, of course. About that…

First step was to saw off the offending area and square up the end grain. And also dig out and prepare an offcut of the same species that has a decent grain match. If I had access to a Festool Domino, this would essentially be the end of the process. Four dominos and some glue: Bob’s your uncle. 

My workbench is an absolute mess as I do a few renovations.

But absent a Festool Domino, how does one join two boards, end grain to end grain? Finger joints are probably the best option, because of the large amount of long grain gluing surface. For a hand tool guy like me, that’s essentially a bridle joint. I think in this application, it would be strongest if the mortise was in the remaining leg and the tenon on the added piece. I almost made bridle guides, but that probably would have taken longer than just sawing and paring. 

Now to saw down the sides of the mortise.

Once the mortise was nicely pared to the lines, I roughed out a tenon and finessed it to a friction fit with a router plane. Remember to ease the inner parts of the mortise to leave room for glue on the mating surfaces. A dry fit looked like so:

It was at this point when I realized the offcut was actually from the same board as rest of the leg. Fortuity!

Will a 1″x1″ tenon (with 7/8″ mortise walls) be strong enough for a front leg of a workbench, even with TiteBond Thick & Quick PVA? Fuck if I know. But this is poplar, which doesn’t split easily, so I think I’ll be okay. I plan to add a trio of 3/8 oak pegs as reinforcement along the length of the tenon, which should help. Maybe a couple of metal mending plates too just for luck. But I think it will be strong enough, even without pegs, as long as whatever parallel guide I use for the leg vise doesn’t bear just on the new wood. 

Hopefully I can find the stain I used for the rest of the leg too. 

To be clear, I almost bought a Festool Domino today. But I’m glad I stayed strong and didn’t. Not that having a Festool Domino is bad; I just kind of enjoy doing things the hard way. And I do think this fix is a good solution and should stand the test of time. 

Or not. Fuck if I know. 

JPG

So I Herd U Liek Mudkipz

It’s no secret that I like me a sliding tray in a toolbox. See here. Or here. A pull out tray that covers the whole well is well and good if that’s your thing. I have a vintage craftsman metal toolbox that’s built that way. But I find it gets in the way on the bench.

As shown by the links above, I’ve made a few traveling toolboxes in my day. Any tool storage solution should be customized to tools it will hold, of course. Though much trial and error, I’ve settled on the perfect size (using 5/8″ pine for the case) being roughly 22″ long x 11″ wide x 9″ high. This gives plenty of room in the well for a No. 6 Stanley (my preferred “single” plane), a saw till for a small panel saw (the BTC hardware store saw is shown below, but any small hardpoint saw will fit too) and combination square, a short sweep hand brace and bits, and an eggbeater drill, plus a hammer and a sharpening stone. If the chest were taller, I’d probably add a tool rack to the back wall of the well.

And some other odds and ends.

But a No. 6 is only about 5 1/4″ high, and even a panel saw in its till is less than 6″. What do do with the other 3+” of well space? A sliding tray, of course, that slides front to back and holds everything else I’ll need.

3″ is too deep for a single tray of this size. Nothing you’re carrying You’d waste a ton of space. And 3″ of height is probably enough for two tiers of sliding trays (bottom probably being 1 1/2″ deep (so 1 3/4″ with the bottom)). I’ve certainly done that before in the blue toolbox.

But I thought it would be fun this time to add the second tray inside the first. So I first whipped up a single deep tray with 1/2″ pine in the usual style (1/4″ oak bottom with grain running parallel to the length of the tray, nailed onto the tray) that was about 5″ wide. I also divided off a dedicated chisel compartment, since there will be lots of piling into the rest of the tray.

The divider also let me use up some shorter oak scraps for the inner runners.

To size the inside tray, I found the tallest items that would sit in the bottom of the tray tray (which was either the stock of my marking gauge or my sharpening guide) and sized some thin oak runners to that height, plus 1/8″ (see picture above). Those got glued in to the long sides of the tray. I then knocked together another tray in 3/8″ pine that was pretty much exactly half the length tray and tall enough to fill the remaining depth of the large tray (taking into account the 1/4″ oak tray bottom). The grain of the tray bottom runs perpendicular to the length of the tray this time.

It overlaps the chisel compartment a bit but doesn’t get in the way.

I’ve found the inside tray acts as a bit of a gyroscope when this thing is on the move. The toolbox easily fits in the back seat of the car and I’ve noticed the tray whips around less than if it were a single tray. Perhaps the inner tray shifts a bit on the x axis and takes away some of the y axis momentum (inertia?) of the larger tray. Who knows?

The auger bit seems to have migrated out of the well.

If you need a how-to on making and fitting sliding trays in a tool chest, I highly recommend the Christopher Schwarz 2015 Popular Woodworking article on a Traveling Toolchest (a medium chest that is still big enough for a hobbyist woodworker’s set of tools). Go to the “Interior” section of the article.

This setup works so well, I also added a sliding inner tray to the drawer on my hanging tool cabinet in the shop. More on that later, but a sneak preview below.

No gyroscopic action needed here.

I hope everyone gets some workshop time on the holiday weekend.

JPG

A Love Letter to Impact Drivers

I made a comment on a recent post about how I ever managed to live without an impact driver for almost a decade of woodworking. I’d like to expound on that a bit more.

As folks may know, I build a lot of workbenches. I haven’t actually built one for myself in a while. I’ll find a design that seems intellectual stimulating, build it, and then gift it to a friend or family member. So whenever I’m at the lumber yard, if there is a particularly wide and clear slab of 12/4 or 16/4 lumber (typically ash, poplar, douglas fir, or red oak), I can’t usually help myself. The pile of slabs was becoming a problem, so I made a full size lumber rack. Not one of those wall hangers (Bora, you’re great, but I am constantly worried my entire wall is going to tumble down). A proper, free standing, rolling cart.

Do you like my “The English Woodworker” style saw horses in front?

There are probably 250 star drive construction screws of either 2 1/2″ (65 mm) or 3 1/2″ (90mm) screws in the entire assembly. As much as I’d love to say I drove each with a brace and bit, I in fact used an impact driver. It’s just so useful and effective (if a bit loud; I wear foam earplugs for work like this). To put it in perspective, I wore out not one but two (!) of the included star drive bits in the boxes of screws. I know these aren’t of the highest quality, but still.

I used a lot of what I learned from the television easel project in making this project. That is, the lumber rack is a series of posts set into a foot that is offset from center based on the calculated center of gravity when loaded with lumber. With a 24 inch foot and 13″ or so of shelf, I calculated that the post should be centered at roughly 8″ from the back of the foot.

So each post of the lumber rack was comprised of the following, all 2×4 framing lumber, glued and screwed together (a la Naked Woodworker workbench) after drilling clearance holes for the screws.

  • One vertical beam at 72″ high (part of this is a tenon that laps into a dado in the foot)
  • Four shelf spacers of 15″ high (although the top one is cut to length)
  • Three shelf bars at 16″ long
  • One foot beam at 24″ long
  • Two foot spacers, on at 6″ long (back) and one at 14.5″ long (front) [these create the dado around the vertical beam tenon)
I made four posts, but one of them was like 1/2″ off every single shelf height so I scrapped it.

With the posts made, it was time for the base. I started by joining the two end posts with an 84″ long beam, and added a 27″ long end cap on both (creating an enclosed mortise for the tenon on the vertical beam, rather than just a lap joint). Then I added spacers between the ends and the middle post (to form dadoes) and tied everything together with an 87″ long cap beam on top. The back cap beam also created a convenient catch for storing a few things vertically, leaning against the posts.

First cap beam installed as shown above.

After adding a long rail to plumb up and tie together the tops of the posts (with spacers to make more dadoes), it was time to add some bearers beneath the post feet. These, made of 2×6 (instead of 2×4), would both (a) further support and secure the posts and (b) give a wide surface (away from the joinery screws) to attach some heavy duty casters.

Nice detail of the end assemblies here.

The last step (aside from knocking down the rough corners with an orbital sander) was to add a diagonal brace to each post, reinforcing the base of each post. I’m not 100% sure these were needed, as the posts were each secure and restrained by (w) a tenon that lapped into each foot assembly, (x) cap beams front and back on top of the foot, (y) a bearer below where the casters attach, and (z) a shitload of glue and screws on the general base assembly. But they make me feel better and this thing will have about half a ton of lumber at the outset. It was either this or add some rachet straps, which looked ugly(ier) to me.

Diagonal braces seen here.

I am sure (because I checked) there are plans out there for prettier lumber racks. And I absolutely could have spent 10x the time and 2x the money mortising 4×4 posts and drawboring everything. I wish I could say otherwise, but other than a combination square and a marking knife for some more precise cuts, I did not use a single traditional hand tool on this entire project.

But when you need a giant lumber rack, and you’ve got handy a chop saw, an impact driver, some 2×4’s, and a giant box of screws, you do what you have to. I even think I learned a thing or two in the making.

And, most importantly, I can at least walk around in my basement again.

JPG

Apartment Woodworking: Year 10 Retrospective (Part 1)

I recently celebrated my 10th woodworking anniversary. About this time in 2012, I got sick of paying for furniture that didn’t quite match my sensibilities and took matters into my own hands. I’ve probably covered this before, but growing up, we were a New Yankee Workshop household (not a Woodwright’s Shop) household. So when I decided to get back into woodworking as an adult, I went first for some power tools. A home center run with my father resulted in 12″ chop saw, a plunge router kit, a cordless handheld tool bundle, and a boatload of wood screws (plus one hard point saw and one chisel). Those tools alone got me through a bed (that was reclaimed into the base frame for my bar), a desk (that was reclaimed into the base frame for my regular outdoor workbench), and a console table (reclaimed into god knows what).

But I quickly gravitated toward working primarily without power. Not just because it’s loud and dusty using a plunge router in your foyer, no matter how great your shop vac. But also because it’s meditative to me. Now I am sure there are some folks who Zen out with the random orbit sander. But not I. My happy place is a No. 6 or No. 7 hand plane and a stack of rough sawn lumber to S4S.

My other happy place.

Sure, I still have that same chop saw and cordless circular saw. And I regularly use them, along with a hollow chisel mortiser and a thickness planer. I even bought an impact driver a couple months back and can’t believe how I’ve lived without one for all these years. But the fact is, nowadays my power tools support my hand work; not the other way around.

Although I joke that I am an artist, I will never make anything that ends up in a museum. I’m not a savant at anything woodworking related (although I consider myself well above average at hand cut dovetails). I have a day job, that keeps me very busy. And in these 10 years, I’ve devoted enough time to the craft to have picked up a thing or two. And I’d like to share that collected wisdom with the world.

This will be a multi-part series. I’m not sure how many installments there will be, and I certainly expect I won’t make it straight through without deviating to regular posts. I have literally no sponsors.

Getting Started in Woodworking

If you’re here, it may be because you’ve searched “Woodworking in an Apartment” or “Small Space Woodworking” and took a flyer. If so, welcome. I’m James and I have very strong opinions on literally everything.

If you think you might want to get into hand tool woodworking with a limited tool kit and limited space, there are better resources than me. You should go to YouTube and check out Paul Sellers and Richard Maguire. Paul and Richard are giants to me. Paul’s 10 part workbench video came out a few months before I started woodworking (although I didn’t discover Paul until 2014, after 2 years of fapping about with power tools). Paul is like a combination of Mr. Rogers and Bob Ross.

Richard started posting a year into my woodworking career. Paul’s website, Common Woodworking, didn’t exist when I needed it most. Richard’s site, The English Woodworker, has long form content (both paid an unpaid) that cannot be beat. Richard is at the same time exceedingly practical and esoteric. Trust me; you’ll see.

So check their stuff out and maybe come back here if you want more of those very strong opinions of mine. If you’re open to using more substantial power tools, the Woodworkers’ Guild of America and the Wood Whisperers Guild are both good resources.

Beginner Woodworker Hand Tools

People have written entire books on this question. I have my own thoughts, sure. My only piece of real input is to buy a few tools of good quality, rather than a bunch of tools of crappy quality. But if you want my 10 year retrospective take on the absolute core tool kit, here it is.

  • Hardpoint panel saw from the home center (Home Depot has DeWalt; Lowes has Craftsman; I have used both)
  • 1/2″ (and maybe 1″ too) Lee Valley bevel edge chisel (the ones with the clear handle; they work both for fine work and mortising)
  • No. 5 Stanley Bailey pattern Hand Plane (Patrick Leach at http://www.supertool.com/ can get you a good worker that won’t take much to restore; sign up for his monthly tool list so you can build your kit with good vintage stuff if you want to go forward)
  • Stanley 10-049 folding utility knife (Paul Sellers swears by this knife and so do I; get it from Amazon)
  • Thorex double face mallet (both Paul Sellers and Richard Maguire use one and so do I; get it from Amazon)
  • 12′ tape measure (the Starrett “exact” one is pretty great, and cheap, from Amazon)
  • 12″ combination square (I use a Starrett, but Lee Valley sells a 12″ in a set with a 6″; they are pretty accurate for the price)
  • Taytools double sided diamond plate sharpening stone (these are pretty good for the price, Amazon available, but also get a sharpening stone holder from powertec or peachtree and some 3 in 1 oil)
  • Vise type honing guide for plane and chisel sharpening (I like the eclipse-style one you can get from Lee Valley, but make sure to make a stop block system for repeatable angles)
  • Cordless drill driver (let’s face it, you probably have one already)

And that’s it. Don’t forget the glue and the mechanical pencil.

You can probably get away with a speed square from the home center instead of a combination square.

Workbenches

I currently work on a Moravian-style knock down workbench based on Will Myers’ excellent video series. And Christopher Schwarz of Lost Art Press is the modern authority on workbenches of all styles. His Ingenious Mechanicks book changed my life.

But for my money, I would check out either The Naked Woodworker workbench, which can be built with just dimensional framing lumber from the home center and the tool kit described above. Or check out Rex Krueger on YouTube and his “Joiners Workbench“, which is similar but arguably easier to build with the same kit.

Or just find a thick plank and make that Grandpa Amu low workbench, which I love.

I’ve built a few of those Chinese-style low benches, two of which are shown in this one picture.

I’m going to stop it there for now. I could otherwise go on forever.

Btw, I’m not on twitter anymore. I have a strict “no social media owned by delusional man child” policy (I’ve been off facebook for several years for the same reason and never had an instagram).

JPG

Incremental Advancement

I am by no means an innovator. Folks have had small shops in the past and they will have them in the future. I invent nothing, as the saying goes. But because I am a hobbyist woodworker who strives for a manageable tool kit within a finite shop space, I don’t always have the exact tool I need at hand.

Take, for instance, the timber framed saw horses I’m making as a gift for a new homeowner (and close friend who will inevitably ask me for help on home improvement projects). I’m using the Richard Maguire design (he calls them saw donkeys, lol). Which means beefy tenons with drawbore pegs to keep everything cinched under the extra strain of having no lower stretcher.

Like so.

The most important part of a drawbore is ensuring the peg can pass cleanly through the joint, flexing but not plowing or crushing as it’s pounded through the offset holes. That’s why it’s important to observe the three finer points of successful drawboring: (i) don’t use too extreme of an offset on the tenon hole, (ii) use a longer taper on the front of the peg, and (iii) ease the entrance to the hole on the tenon. The fourth point (in my experience) is to wax your pegs, but some folks like to glue their drawbored pegs in. I don’t.

When doing smaller drawbores for furniture, I have a couple of machinist alignment pins that work great as drawbore pins where 5/16″ and 3/8″ pegs are used. You assemble the joint, insert the drawbore pin, and the taper of the drawbore pin draws the joint to full closer and also reams (really compresses, but still) the entrance of the hole on the tenon (thus fulfilling finer point (iii) above and illustrating the purpose of finer point (ii) above).

For these sawhorses, though, the pegs are 5/8″, and I’m not even sure they make a machinist alignment pin for that size. So, instead, I use a countersink bit to ease the start of the holes in the tenon. This is functionally the same as properly using a drawbore pin.

I almost always use a hollow chisel mortiser for these big mortises, but the tenons are cut by hand.

In fairness, I do use 5/8″ pegs for a lot of workbench and workbench-adjacent building. So maybe I would be justified owning an appropriately sized drawbore pin. But drawbore pins are single purpose tools. My countersink bit, however, has many uses across the full gamut of my woodworking. And I’m not sure a drawbore pin of the right size would have much effect on the oak, ash and maple that I use in my workbench building activities. So I will continue to use my countersink bit. And I could probably take the drawbore pins out of my toolkit entirely.

I learned all of the above finer points of drawboring through trial and [lots of] error. I’ve had pegs fail to flex through the offset hole, split down the middle and blow out the back of the board with the mortise (and in doing so fail to cinch the joint together). I’ve had pegs fail to flex through the offset hole and snap (making the usual solution, to drive a new peg all the way through the joint, unavailable because the peg didn’t clear the offset hole cleanly). And I’ve had pegs that made it through the offset hole and still do both of the same.

But if there was one of the rules that each situation could have been fixed by, it’s probably finer point (iii): easing the entrance to the holes in the tenon. And when all it takes is a countersink bit, that’s a pretty efficient solution.

JPG

Reclaiming Some Space

The last few months, I have been [very] slowly making a wall-hung tool cabinet. While my dutch tool chest holds all of the tools I could ever need (and quite a few I don’t), I have recently added a No. 6 to my everyday kit and there was no room in the DTC for the new plane. I have also gone back to using a No. 4 1/2 smoothing plane (instead of a No. 4) and, similarly, the DTC didn’t have room for it. Even with the No. 4 back in storage.

Bench planes from left to right: 7, 6, 5, 10 (jack rabbet), and 4 1/2.

It also started to feel cramped in the workshop. The DTC lived on the left wall of the shop, near the leg vise. The chest (and the platform it sat on) took up significant floor space that I couldn’t get back. The area below the cabinet is now free for a saw bench that is otherwise blocking my sharpening station at times.

I have never built a wall-mounted tool cabinet before. So this is just a prototype of white pine, poplar and cheap birch plywood; the usual materials for figuring thing out. And I have in fact figured a few things out in this project so that. If I ever make a better one out of my nice, reclaimed genuine mahogany, it will be better.

What I struggled with the most was the saw till. The backing board for the plane till is pretty steep (to accommodate the 9″ case sides) and therefore a regular saw till didn’t do the trick. The saws just fell out of them. And, unlike with the planes, there is no quick fix with rare earth magets.

I thought for a while and realized that my three back saws are all of the same make and therefore the totes should all be roughly the same shape. I could hook them onto something (like a 1″ dowel) and then use a till block to keep the plates aligned and safe.

Like so.

I started with dovetailing together a U-shape out of some 1/2″ poplar. The sides each took a 1″ hole to accommodate the dowel, which was screwed (but not glued) into place so I could easily get to the screws attaching the hook to the backer board.

I ultimately changed out the oak dowel for a pine one, which will be easier on the saw totes.

I then located a till block (with a 1/2″ thick tongue on it for ease of attaching to the backer board) so it supported the saw plates without breaking the plane of the carcass. The kerfs in the till block (which is 5/4 material) which hold the saw plates are cut with a fine panel saw. I wish I had left more meat below the ends of the kerfs. But poplar doesn’t split like pine or oak, so it should be okay. I will report back if it ever splits apart.

The tongue is lapped and screwed into the till block for a strong joint. Not that it takes any great strain.

The overall saw till assembly has usable space around it. I’m no Henry Studley, but I was able to fit some tools into the available crevices. My 3/4″ dowel centers, which I use quite a bit for bench-making to reuse existing benchtops that attach via pegs, sit above the hook. Under the saws are a few machinist squares I don’t use often and also some brass calipers. My pinchrods hang off the side of the saw till between it and the case wall. And a 12-1 tool rests in a free nook.

As you can see, there is an unused area at the top of the case. I’m not 100% sure what to do here. I’ll hang another panel to the right of the main cabinet with racks for chisels, screwdrivers, gouges, raps, and other handled tools. So that just leaves my panel saws, a mallet, a hammer, and the boring tools (braces, auger bits, etc.). I could hang a shelf up there and pile the boring tools in (like with the middle compartment of the DTC). That feels a little like cheating.

Let let me think on it some more and revert.

JPG

Maximizing Usable Tool Storage Space

*Editors note: This is James’ first attempt at a long-form woodworking article. He is aware it is a departure from his usual format and tone.

There is an idiom, often attributed to either Benjamin Franklin or the anonymous Shaker craftsman, that goes, “A place for everything, [and] everything in its place”. I doubt Old Richard Scary actually came up with the phrase. I also doubt the Shakers would disagree with the notion. After all, if you can be one thing, you should be efficient. And for those of us who have small shops, this is more than just an aesthetic; it’s a way of life.

There are, as far as I can tell, there are two main approaches to tool storage in woodworking (although I would imagine these concepts apply to all crafts and shops). The first, just keep it open and pile everything in, works fine for things like full size, stationary English floor chests with banks of sliding tills and ample room for everything. The other, divide it up and create slots for individual tools (sometimes called “French Fitting” [double capitalization intended], which is the term I will use for the rest of this article), excels in chests that will travel or where space (read: organization) is at a premium. I prefer a hybrid of those approaches, but skewed heavily toward the latter.

A full size Dutch Tool Chest is a mix of both French Fitting and Pile In organization.

When there is a place for everything, and everything is in its place, the tool you need is more likely to be easily findable and at hand. In addition, the tool is likely to remain set, tuned and sharp, having been protected from jostling against its neighbors. This is especially true for chests that get moved around, loading in and out of the car or dumped on the lawn for some sunshine woodworking. But even for stationary chests that live inside the shop, there is a level of French Fitting that I believe benefits everyone. It goes without saying that this is a handtool-focused approach. I only use a few machines, and each of them directly complements my handtool-first approach. If you are a machines-only woodworker, please feel free to keep reading. But this article might not have as much utility for you.

In my workshop (which is a 12×13 bedroom), I work out of a large Dutch tool chest (a “DTC”) in the Schwarz design from 2013. The chest lives to the left of the leg vise, pretty centered on the left wall of the room. In the main compartment of the chest (the “Well”), each of the primary tools (e.g., bench planes, back saws, hand saws, chisels, and other frequent-use tools) lives in a rack or a divided till and no other tool fits on that slot. A tool comes out, does its job, and goes back to its home. Directly below the Well is a drawer that holds longer, more fragile tools (e.g., rasps, paring chisels), as well as other small tools that wouldn’t fit nicely into the main well. This drawer is not French Fitted. And, honestly, it gets pretty cluttered.

The rest of the chest is two open compartments where tools are just piled in. The middle compartment holds tool rolls with augur bits, plane and joinery floats and gouges, plus the boring tools (braces and eggbeater drill). The bottom compartment holds a quarter set of hollows and rounds and my joinery planes, plus some drill and driver bits and sharpening slips (and a hammer that doesn’t fit anywhere else). A few odds and ends are strategically stashed throughout the chest.

But, like I said, that chest doesn’t ever move. When I woodwork outside or get called to a buddy’s house to fix something, I ask so much more of the tool chest I bring with me into the wild. That chest must not only hold (and organize) everything I need to do the job, but it must also keep everything secure and safe through the bumps and bruises of lugging it around. So let’s talk about French Fitting a DTC-style traveling tool chest.

Everything begins with this.

Chisels and Other Handled Tools

When I begin planning tool storage in any tool chest, it starts first with a rack for chisels and other handled tools that attaches to an inner wall of the chest (the back wall, for a DTC). Christopher Schwarz has covered this topic in depth previously, but in my experience, starting with 1/2″ holes at 1 3/8″ centers does the trick. I like a 1 3/8″ x 1 3/8″ pine board for the rack. Although many tools will fit into the 1/2″ holes, a good portion of the holes must be elongated to fit, among other things, wider chisels. So a drill press is your friend here. Map out your strategy for this and pay attention to the width of the tool above the rack. For example, two marking gauges side by side will probably crowd each other even with 1 3/8″ spacing. So maybe find something with a narrower handle to put in between them to space things out. I like my chisels on the right side of the rack; others prefer the left side. Just don’t put them in the middle, though (for reasons that will be come clear in a bit).

I like to put an awl to the left of dividers so the adjustment bar can tuck away.

Before I hang the rack to the inside wall of the DTC, I need two measurements. The first is how much below the top of the rack the largest chisel (in this case, 1″) will hang. Add 1″ to that and you get a rough height for the gap from the floor of the well to the underside of the rack. That extra inch should ensure both that your largest chisel will never hit the floor of the Well and also there is clearance for other, longer tools (e.g., a sliding bevel or brad awl). The second measurement is how much space that leaves to the top of the chest. If there is not enough clearance for the tallest tool in the rack, lower the rack until it the largest chisel doesn’t dig into the floor of the well but there is still clearance for the chest lid to close. Now affix this rack to the back wall of the chest with countersunk screws. I like to drive two from outside of the chest about 1″ from the ends of the rack, and one from the inside of the chest centered between the narrow chisel and the next tool to its left. This rack carries a lot of weight so attaching from both sides helps distribute the pressure.

Saws and Combination Square

After the tool rack is attached, it’s time to make the saw till. When traveling, I carry three saws: a 12 TPI rip cut back saw (the Veritas ones are pretty nice and very durable), an 11 TPI rip cut panel saw (it also crosscuts) and a 6 TPI rip cut panel saw. The saw till I prefer is U-shaped and joined at the corners with either dovetails, finger joints or rabbets and nails. Pine is just fine here (and for eveything else), although any wood will work.

The saw till has slots cut with the saws that it will hold (3/4″ on center spacing works great for most saws) and its height is just whatever will friction fit below the tool rack (it adds even more support to prevent the tool rack from sagging). Remember to leave at least 2″ beneath the lowest slot and (at least for the backsaws) don’t make the slots so deep that the saw teeth don’t bite into the till itself. If there is room, I also add a 1/8″ slot for a combination square.

For this saw till, you can can just make ends and screw them in place from the outside of the chest and from the underneath. But I find a bridge in the middle makes the saw till easier to affix (and remove, if needed). Regardless, space the ends based on the saw plate of your shortest saw; an overall width of 2 inches less than the length of the saw plate should work for most saws. When you screw it in place, it should be roughly centered and tuck under the back till just 1/8″ or so. If done right, this saw till has the added benefit of also supporting the middle of the tool rack, which can sag over time.

This is a spare saw till that I had handy. It holds 2 panel saws and 3 backsaws in a full size tool chest.

General Small Tools

The tool rack and the saw till have now created 3 zones of tool storage. The front of the well is for planes and other large items (more on that in a moment). And on each side of the saw till (remember, you left at least 2″ beneath the saws) there is now a great place for general storage. I fill these zones with H-shaped semi boxes that are flush to the front of the saw till. The top of the H is a dead zone that protects the edges of the chisels and other edge tools as they hang down below the tool rack. We’ll call these the “general tills”.

These general tills are just friction fit into the spaces on each side of the saw till and will get closed off later. These general tills are a great place for things like nail punches, drill driver bits and other small items that don’t have edges to protect and can be piled in. You can also use the now-closed-in area below the rack and between the ends of the saw till for specialty storage. I keep my small router plane and dovetail guide there (both are tools I rarely use while outside or on site) that won’t damage anything if they rattle around a little bit.

Plane Till

We’ve now come to the most important part of the operation: the plane till. This is entirely based on the bench planes (and other items) you’ll have in the chest. In the case of my traveling tool set, I use a No. 5 1/2 and a No. 3, which (conveniently) fit in a single row of plane storage, so the second row in the plane till can be for other things. In a full size tool chest, you’ll probably need both rows for planes (I use a No. 7, No. 5 and No. 4 in my main DTC, for example). In fact, the length of these two planes, plus dividers, dictates the overall length of the tool chest itself.

Rabbets and nails are the order of the day when making the saw till. I used to dovetail these, but it’s too easy to undercut a baseline and get a bad fit lengthwise. If I used a table saw, I’d probably make these out of 1/4″ stock all around and just brad nail everything together after cutting VERY shallow rabbets. But with hand tools, 1/2″ stock feels better all around (except for the thin middle dividers).

When locating the divide between compartments that will hold planes, I find an extra 1/8″ of length all around works well for getting Bailey-pattern planes in and out of the plane till. For instance, a No. 5 1/2 is 15″ long and 2 3/4″ wide, so the compartment ends up being 15 1/8″ long and 2 7/8″ (or a hair under) wide. Don’t make them too tight, though; the difference between “secure” and “difficult to remove” is basically 1/16″ in each direction. Just FYI, the knob on smaller planes (like the No.3) extends past the toe. I learned that the hard way.

The recesses on the front board are clearance for the fall front locks.

Aside from ensuring your planes sit snugly, the only other critical measurement here is ensuring the ends of the plane till take up whatever space is left between the front wall and the general tills, thereby locking everything in place. If you do have to build up part of the till to fit a smaller plane, glue that spacer to the plane till. That makes a pretty meaty strip for boring some more 1/2″ holes for extra general tool storage (when I get around to it, my nail punches and marking knife will live there). Just make sure the spacer is the same height as the rest of the plane till.

Notice the filler piece to account for a No. 3 being so much narrower than a No. 5 1/2. It will get some 1/2″ holes for more storage.

The last part of the plane till is (to use a Rex Krueger term) the “key”. It fits into the space between the general tills and the plane till and closes off the second row of the plane till. But don’t glue it to either the plane till or the general tills. As long as the fit is reasonably tight, it will lock everything in place but still allow you to pull the tills out if needed. I like like to add a couple of spacers to the back of the key, which complete the general till box and keep the general tills from pinching in on each other.

All things being equal, the Well should now be perfectly organized for the tools to be kept in there. There is space on the walls for pouches and magnets and whatnot to hold additional tools; just be sure not to obstruct anything coming in or out. You’ll probably need to remove a saw or two to reach the less commonly-used tools (like that block plane on the left side), but that’s just how traveling tool chests work. Success means striking a balance of security and accessibility.

Yes, it’s tight. But everything is where it needs to be.

With a little bit of thought, though, it’s possible to easily store everything you need for meaningful woodworking while also keeping your tools safe from the bumps and bruises of moving the chest around. All the same principles apply to shop storage, if you are so inclined (and I would posit that the edge tool rack and saw till are important for ANY type of tool chest, even with banks of sliding tills for everything).

This is all just a suggestion, of course. Use whatever organization method fits your style of work and tool set. I just want your tools to be safe, secure and ready when you need them.

And that’s it for now. Next week, we’ll examine in more detail the “just keep it open and pile it in” method. Natch.

JPG

Hither and Thither

Earlier this year, I made a little traveling tool chest to go with my traveling workbench. It works great, and it holds all of the hand tools I need for working away from the shop. But it’s not perfect. I didn’t really think through the bits and bobs I’d need to actually do woodworking. Things like a roll of blue tape, a powered drill driver (and charger), a hammer, and auger bits. Pretty much everything that isn’t french fit into the well or a till just gets piled in and must be unpacked and piled elsewhere to access to the main set of tools.

It’s a well known fact that Dutch-style tool chests are bigger on the inside (having lots of places to stash tools around the inside of the main compartment). And with some wall cabinet projects coming up, I needed some dovetailing practice. I’d been cutting mostly mortise and tenon joints as of late. Even though I consider myself to pretty good at dovetailing, it had been a while. So let’s make a Dutch tool chest.

No half tails this time. But I still got it!

Now a full size Dutch tool chest (single lower compartment) is portable enough in its own right. But I like the form factor of my current traveling tool chest and have found a full size DTC to be a little unwieldy to load and and out of the truck. So this chest, although 27″ wide, is only 18″ high. That means a full size main compartment but only a 3.75″ lower compartment. Big enough to cram in a drill driver and charger, a roll of auger bits and a brace and bit and some other bulky odds and ends, but not so big that I’m tempted to overpack. I’ve found that as far as traveling tool chests go, the more extra space you have, the more extra tools you’ll cram in. And that defeats the purpose.

It looks narrower than it actually is.

One of the beautiful design features of a DTC is the angled top. Not only does it keep you from piling things onto the chest (thereby preventing you from getting at your tools), it also means that you can put a full size tool rack on the back wall of the main compartment. You just can’t do that with a square chest. I prefer a tool rack that is 1.25″ x 1.25″, with 1/2″ holes drilled on 1.5″ centers. A good number of my tools actually require elongated holes (not just the bigger chisels), but a 1/2″ hole on 1.5″ center is good for a great many tools.

Yes: in a traveling tool chest, I still need 3 screw drivers. That’s a bevel gauge between the awl and the marking gauge, btw.

Another great part of the DTC form (piggybacking off the angled top) is the plane till. Not only can you fit a plane till into the main compartment of the chest (in this case, one that holds not only my two shortened panel saws, but also a small 12tpi rip tenon saw), but because of the extra headroom in the main compartment, the space underneath the saws on both sides of the till are usable space. In a stationary, shop-based DTC, you can just pile things in there. For this traveling chest, I’ll need to make some little trays (like the plane till, more on that below) to keep things from bouncing around. And the saw till also keeps the tool rack from sagging in the middle.

Usable space under there.

This is a traveling chest, so I don’t need to fit a full set of bench planes. Instead, I just keep a No. 5 (with both straight and cambered irons) and a No. 3, plus a low angle block plane. Taking into account the saw till, I’ve got 6.125″ of depth for two rows of plane till/general storage. That is enough (with some creative orientation) to fit everything I need, including my sharpening gear. That’s what I currently have in the square traveling tool chest well, at least.

I don’t own a table saw, and making long thin stock is tough by hand (at least without using rolls of double sided tape). So I tend to build up my tills for French fitting with 1/4″ nominal hobby boards from home center. The poplar is best; one can usually find it nicely quartersawn in 48″ lengths. Its true thickness is around 7/16. But when French fitting by hand, it’s just shooting board practice.

Still needs some internal dividers.

I think that’s it for this one. I have a new to-do’s for the rest of the weekend that will take me out of the shop.

JPG

Sunk Costs (Follow-up)

After very little deliberation and just a few moments of thought, I’ve made a tray to complete the refitted knockdown outdoor workbench. It is also of poplar (to match the new slab) and about as simple as a workbench tray can be. Just a wide plank with a back lip glued and screwed on.

And when it’s sealed with some oil, it might even match!

It’s important not to overcomplicate things, especially not an outdoor workbench. So when I came across a thin-ish poplar board at the lumber yard that was wide enough (more than 14″!) to get both the tray bottom and the back edge, I jumped at it. Sure, it’s only 7/8 after flattening. But that actually maximizes the available depth (the slab is only 2 3/4″ or so).

I ended up not even needing the extra board I bought for the back edge of the tray.

To keep the tray aligned and stationary, I added some long battens with elongated holes and truss screws to the underside. These lock in place with a satisfying snap to the inside of the back legs and the top rails. Is it elegant or beautiful? No. Is it perfectly functional? Yes, of course. And it has the added function of keeping things relatively flat throughout seasonal movement.

Let’s hope the oil fixes that color match problem.

With the weather getting nicer, I’m glad to have this bench back up and running. Poplar gets a bad rap sometimes, which is undeserved in my view. Not only does it paint and stain well (especially very dark gel stains which cover up the streaking and varying hues (from white to purple), but it’s stable and cheap. The rough sawn boards shown on the saw horses above cost $45 in total at a lumber yard just outside New York City.

And that’s what I call a deal.

JPG